You're thinking, "He doesn't have anything worthwhile to post on New Year's Eve." You're right.
Yeah, so here it is, issued forty years ago today.
Wow - time does fly when you're having fun - forty years' worth!
Note that it doesn't even give my subjects - major: hydrology; minor: mathematics. One course short of a minor in chemistry.
Dissertation title: "Finite-state models of transport phenomena in hydrologic systems" Still getting cited, too.
Download Campana_PhD_FS_Models_UofAZ_1975
Abstract
Transport phenomena in hydrologic systems are simulated with finite-state models (FSMs), which are similar to mixing cell models in that they utilize a mixing cell as their basic subdivision, yet are more flexible, capable of modeling more complex systems, and easier to manipulate than previous mixing cell models. The basic FSM equations are discrete, recursive forms of the continuity equation for mass transport and the storage equation for fluid transport. Different types of mixing and flow can be simulated by specifying appropriate algorithms for use in the basic equations. Finite-state models thus have a physical basis, although they avoid the use of differential equations. The FSM digital computer model can simulate systems in one, two, or three spatial dimensions with relative facility. In many important cases, transit number and age number distributions can be calculated. These distributions, and especially their means, are useful in determining fluid residence times in hydrologic systems. Two aquifer systems are modeled using finite-state models. In a portion of the Tucson Basin Aquifer of southern Arizona a three-dimensional, steady flow FSM is used to account for the observed carbon-14 age distribution in the aquifer without assuming piston flow in the aquifer and without evaluating dispersion parameters. This model provides a first approximation of the three-dimensional flow distribution, an estimate of the long-term average annual recharge, and fluid residence times in the aquifer. The second FSM, two-dimensional and non-steady flow, accounts for the transient distribution of tritium in the Edwards Limestone of south-central Texas. This aquifer is a highly anisotropic, nonhomogeneous karst aquifer that is difficult to model by traditional methods. In both models, first guesses for cell volumes and flow distributions were made on the basis of available hydrogeological data. Saturated, unsaturated, and open-channel flow also are examined. Flow algorithms for the basic FSM storage equation follow the theory of linear systems, although in certain regimes, especially those involving unsaturated flow, it may be necessary to develop nonlinear flow algorithms. This was not attempted. It is also shown that the finite-state model can simultaneously model the transport of mass and fluid in a hydrologic system. The FSM also has the potential for modeling heat transport, which may prove useful in simulating geothermal reservoirs as well as other systems involving heat transport.
Many thanks to my advisor, the late Eugene S. 'Gene' Simpson. I owe him much.
Download Gene Simpson Tribute by Neuman and Campana
Enjoy! I did. No complaints about the way things turned out.
Happy New Year!
'Congratulations. You've got your union card." - member of my committee
"The PhD system is the real root of the evil of academic snobbery. People who have PhDs consider themselves a priesthood, and inventors generally don't have PhDs." - Freeman Dyson (note: Dyson does not have a PhD. NBD!)
Hi, Manu.
This is great! Who knew????
Thanks - much appreciated!
Posted by: Michael | Monday, 11 January 2016 at 02:18 PM
Michael -- congrats on the 40th anniversary. The priesthood of the Phd is a magic cloak that is designed to further the goals of the Empire. Occasionally, a Jedi infiltrates it, and stays, breeding love from all.
You are a phenomenon, you are the nucleus of H20, and for that I don't think the parchment was needed.
Very best in the New Year.
Upmanu
PS -- my advisor Leo Roy Beard had only a Bachelor's degree from the 1940s, and yet in the 1990s I found it much easier to discuss nonlinear dynamics and climate dynamics than I did with most certified members of the Union.
"Some people are born great, others have greatness thrust upon them, and yet others achieve greatness."
May still be true 500 years after this was first said by Will S. and it is easier today to re-define greatness since we live in the time and land of giants.
Laura: Dyson and Sears Kenmore -- we shall all be surpassed by iRobot in due course....
the Roomba does not suck as much as either the Dyson or the Sears, and its engineers may have a Phd or two. Their CTO does not, but he does tinker and he does smile.
Yea, Michael!!
Posted by: Upmanu Lall | Friday, 01 January 2016 at 08:46 AM
Thanks for commenting, Ken and Laura.
Laura: Love your comment about a Dyson and a Kenmore....You're right - Dyson does not have a PhD. Despite his distinguished career (save for his disparagement of anthropogenic global warming) he seems hung up on that fact. Some suspect it may be that he feels his failure to get a Nobel Prize may be due to that. In any case, I certainly don't feel like I am in a 'priesthood' just because I have a PhD.
Ken: The feeling is mutual. Had you not pursued a career with AWRA I suspect I never would have permanently 're-upped' in the late 1990s. You recall that I originally joined in the early 1970s but would periodically quit then rejoin a few years later. When I rejoined in the late 1990s, you phoned and said. 'Well, are you gonna stay in for good this time?'. Yes.
Posted by: Michael | Friday, 01 January 2016 at 07:10 AM
All of us in the American Wayer Resources Association are so fortunate that you joined the union that day! 😄 Ken Reid
Posted by: Ken | Thursday, 31 December 2015 at 06:17 PM
So I take it Dyson doesn't have a PhD, hence his 'chip'? I had a Dyson---it didn't work at all and I went back to my Kenmore...guess those Sears engineers have PhDs....
Posted by: Laura | Thursday, 31 December 2015 at 10:38 AM